Content Entry

KaTeX Supported Functions

Published: 2018-07-30 Categories: Tips Tags:

This is a list of TeX functions supported by KaTeX. It is sorted into logical groups.

There is a similar Support Table, sorted alphabetically, that lists both supported and un-supported functions.

Accents

$$a’$$ a' $$\tilde{a}$$ \tilde{a} $$\mathring{g}$$ \mathring{g}
$$a”$$ a'' $$\widetilde{ac}$$ \widetilde{ac} $$\overgroup{AB}$$ \overgroup{AB}
$$a^{\prime}$$ a^{\prime} $$\utilde{AB}$$ \utilde{AB} $$\undergroup{AB}$$ \undergroup{AB}
$$\acute{a}$$ \acute{a} $$\vec{F}$$ \vec{F} $$\Overrightarrow{AB}$$ \Overrightarrow{AB}
$$\bar{y}$$ \bar{y} $$\overleftarrow{AB}$$ \overleftarrow{AB} $$\overrightarrow{AB}$$ \overrightarrow{AB}
$$\breve{a}$$ \breve{a} $$\underleftarrow{AB}$$ \underleftarrow{AB} $$\underrightarrow{AB}$$ \underrightarrow{AB}
$$\check{a}$$ \check{a} $$\overleftharpoon{ac}$$ \overleftharpoon{ac} $$\overrightharpoon{ac}$$ \overrightharpoon{ac}
$$\dot{a}$$ \dot{a} $$\overleftrightarrow{AB}$$ \overleftrightarrow{AB} $$\overbrace{AB}$$ \overbrace{AB}
$$\ddot{a}$$ \ddot{a} $$\underleftrightarrow{AB}$$ \underleftrightarrow{AB} $$\underbrace{AB}$$ \underbrace{AB}
$$\grave{a}$$ \grave{a} $$\overline{AB}$$ \overline{AB} $$\overlinesegment{AB}$$ \overlinesegment{AB}
$$\hat{\theta}$$ \hat{\theta} $$\underline{AB}$$ \underline{AB} $$\underlinesegment{AB}$$ \underlinesegment{AB}
$$\widehat{ac}$$ \widehat{ac} $$\widecheck{ac}$$ \widecheck{ac}

Accent functions inside \\text{…}

$$\text{\‘{a}}$$ \'{a} $$\text{~{a}}$$ \~{a} $$\text{.{a}}$$ \.{a} $$\text{\H{a}}$$ \H{a}
$$\text{`{a}}$$ \\`{a} $$\text{\={a}}$$ \={a} $$\text{\“{a}}$$ \"{a} $$\text{\v{a}}$$ \v{a}
$$\text{\^{a}}$$ \^{a} $$\text{\u{a}}$$ \u{a} $$\text{\r{a}}$$ \r{a}

See also letters

Delimiters

$$( )$$ ( ) $$\lt~\gt$$ \lt \gt $$⌈~⌉$$ ⌈ ⌉ $$\lceil~\rceil$$ \lceil
$$~~~~~$$\rceil
$$\uparrow$$ \uparrow
$$[ ]$$ [ ] $$\lbrack~\rbrack$$ \lbrack
$$~~~~$$\rbrack
$$⌊~⌋$$ ⌊ ⌋ $$\lfloor~\rfloor$$ \lfloor
$$~~~~~$$\rfloor
$$\downarrow$$ \downarrow
$${ }$$ \{ \} $$\lbrace \rbrace$$ \lbrace
$$~~~~$$\rbrace
$$⎰⎱$$ ⎰⎱ $$\lmoustache \rmoustache$$ \lmoustache
$$~~~~$$\rmoustache
$$\updownarrow$$ \updownarrow
$$⟨~⟩$$ ⟨ ⟩ $$\langle~\rangle$$ \langle
$$~~~~$$\rangle
$$⟮~⟯$$ ⟮ ⟯ $$\lgroup~\rgroup$$ \lgroup
$$~~~~~$$\rgroup
$$\Uparrow$$ \Uparrow
$$\vert$$ $$\vert$$ \vert $$┌ ┐$$ ┌ ┐ $$\ulcorner \urcorner$$ \ulcorner
$$~~~~$$\urcorner
$$\Vert$$ | $$\Vert$$ \Vert $$└ ┘$$ └ ┘ $$\llcorner \lrcorner$$ \llcorner
$$~~~~$$\lrcorner
$$\Updownarrow$$ \Updownarrow
$$\lvert~\rvert$$ \lvert
$$~~~~$$\rvert
$$\lVert~\rVert$$ \lVert
$$~~~~~$$\rVert
\left. \right. $$\backslash$$ \backslash
$$\lang~\rang$$ \lang
$$~~~~$$\rang

Delimiter Sizing

$$\left(\LARGE{AB}\right)$$ \left(\LARGE{AB}\right)

$$( \big( \Big( \bigg( \Bigg($$ ( \big( \Big( \bigg( \Bigg(

\left \big \bigl \bigm \bigr
\middle \Big \Bigl \Bigm \Bigr
\right \bigg \biggl \biggm \biggr
\Bigg \Biggl \Biggm \Biggr

Environments

$$\begin{matrix} a & b \\ c & d \end{matrix}$$ \begin{matrix}
   a & b \\\\
   c & d
\end{matrix}
$$\begin{array}{cc}a & b\\c & d\end{array}$$ \begin{array}{cc}
   a & b \\\\
   c & d
\end{array}
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$ \begin{pmatrix}
   a & b \\\\
   c & d
\end{pmatrix}
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$ \begin{bmatrix}
   a & b \\\\
   c & d
\end{bmatrix}
$$\begin{vmatrix} a & b \\ c & d \end{vmatrix}$$ \begin{vmatrix}
   a & b \\\\
   c & d
\end{vmatrix}
$$\begin{Vmatrix} a & b \\ c & d \end{Vmatrix}$$ \begin{Vmatrix}
   a & b \\\\
   c & d
\end{Vmatrix}
$$\begin{Bmatrix} a & b \\ c & d \end{Bmatrix}$$ \begin{Bmatrix}
   a & b \\\\
   c & d
\end{Bmatrix}
$$\def\arraystretch{1.5}\begin{array}{c:c:c} a & b & c \\ \hline d & e & f \\ \hdashline g & h & i \end{array}$$ \def\arraystretch{1.5}
   \begin{array}{c:c:c}
   a & b & c \\\\ \hline
   d & e & f \\\\
   \hdashline
   g & h & i
\end{array}
$$\begin{aligned} a&=b+c \\ d+e&=f \end{aligned}$$ \begin{aligned}
   a&=b+c \\\\
   d+e&=f
\end{aligned}
$$\begin{alignedat}{2}10&x+&3&y=2\\3&x+&13&y=4\end{alignedat}$$ \begin{alignedat}{2}
   10&x+ &3&y = 2 \\\\
   3&x+&13&y = 4
\end{alignedat}
$$\begin{gathered} a=b \\ e=b+c \end{gathered}$$ \begin{gathered}
   a=b \\\\
   e=b+c
\end{gathered}
$$x = \begin{cases} a &\text{if } b \\ c &\text{if } d \end{cases}$$ x = \begin{cases}
   a &\text{if } b \\\\
   c &\text{if } d
\end{cases}

KaTeX also supports darray and dcases.

Acceptable line separators include: \\\\, \cr, \\\\[distance], and \cr[distance]. Distance can be written with any of the KaTeX units.

The {array} environment supports | and : vertical separators.

The {array} environment does not yet support \cline or \multicolumn.

Letters and Unicode

Greek Letters

Direct Input: $$Α Β Γ Δ Ε Ζ Η Θ Ι \allowbreak Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω$$
$$\allowbreak α β γ δ ϵ ζ η θ ι κ λ μ ν ξ o π \allowbreak ρ σ τ υ ϕ χ ψ ω ε ϑ ϖ ϱ ς φ$$

$$\Alpha$$ \Alpha $$\Beta$$ \Beta $$\Gamma$$ \Gamma $$\Delta$$ \Delta
$$\Epsilon$$ \Epsilon $$\Zeta$$ \Zeta $$\Eta$$ \Eta $$\Theta$$ \Theta
$$\Iota$$ \Iota $$\Kappa$$ \Kappa $$\Lambda$$ \Lambda $$\Mu$$ \Mu
$$\Nu$$ \Nu $$\Xi$$ \Xi $$\Omicron$$ \Omicron $$\Pi$$ \Pi
$$\Sigma$$ \Sigma $$\Tau$$ \Tau $$\Upsilon$$ \Upsilon $$\Phi$$ \Phi
$$\Chi$$ \Chi $$\Psi$$ \Psi $$\Omega$$ \Omega
$$\varGamma$$ \varGamma $$\varDelta$$ \varDelta $$\varTheta$$ \varTheta $$\varLambda$$ \varLambda
$$\varXi$$ \varXi $$\varPi$$ \varPi $$\varSigma$$ \varSigma $$\varUpsilon$$ \varUpsilon
$$\varPhi$$ \varPhi $$\varPsi$$ \varPsi $$\varOmega$$ \varOmega
$$\alpha$$ \alpha $$\beta$$ \beta $$\gamma$$ \gamma $$\delta$$ \delta
$$\epsilon$$ \epsilon $$\zeta$$ \zeta $$\eta$$ \eta $$\theta$$ \theta
$$\iota$$ \iota $$\kappa$$ \kappa $$\lambda$$ \lambda $$\mu$$ \mu
$$\nu$$ \nu $$\xi$$ \xi $$\omicron$$ \omicron $$\pi$$ \pi
$$\rho$$ \rho $$\sigma$$ \sigma $$\tau$$ \tau $$\upsilon$$ \upsilon
$$\phi$$ \phi $$\chi$$ \chi $$\psi$$ \psi $$\omega$$ \omega
$$\varepsilon$$ \varepsilon $$\varkappa$$ \varkappa $$\vartheta$$ \vartheta $$\thetasym$$ \thetasym
$$\varpi$$ \varpi $$\varrho$$ \varrho $$\varsigma$$ \varsigma $$\varphi$$ \varphi
$$\digamma $$ \digamma

Other Letters

$$\imath$$ \imath $$\nabla$$ \nabla $$\Im$$ \Im $$\Reals$$ \Reals $$\text{\OE}$$ \text{\OE}
$$\jmath$$ \jmath $$\partial$$ \partial $$\image$$ \image $$\wp$$ \wp $$\text{\o}$$ \text{\o}
$$\aleph$$ \aleph $$\Game$$ \Game $$\Bbbk$$ \Bbbk $$\weierp$$ \weierp $$\text{\O}$$ \text{\O}
$$\alef$$ \alef $$\Finv$$ \Finv $$\N$$ \N $$\Z$$ \Z $$\text{\ss}$$ \text{\ss}
$$\alefsym$$ \alefsym $$\cnums$$ \cnums $$\natnums$$ \natnums $$\text{\aa}$$ \text{\aa} $$\text{\i}$$ \text{\i}
$$\beth$$ \beth $$\Complex$$ \Complex $$\R$$ \R $$\text{\AA}$$ \text{\AA} $$\text{\j}$$ \text{\j}
$$\gimel$$ \gimel $$\ell$$ \ell $$\Re$$ \Re $$\text{\ae}$$ \text{\ae}
$$\daleth$$ \daleth $$\hbar$$ \hbar $$\real$$ \real $$\text{\AE}$$ \text{\AE}
$$\eth$$ \eth $$\hslash$$ \hslash $$\reals$$ \reals $$\text{\oe}$$ \text{\oe}

Direct Input: $$∂ ∇ ℑ Ⅎ ℵ ℶ ℷ ℸ ⅁ ℏ ð$$ ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖÙÚÛÜÝÞßàáâãäåçèéêëìíîïðñòóôöùúûüýþÿ

Unicode

The letters listed above will render in any KaTeX rendering mode.

If the KaTeX rendering mode is set to strict: false or strict:"warn" (default), then KaTeX will accept all Unicode letters. The letters not listed above will be rendered from system fonts, not KaTeX-supplied fonts, so their typography may clash. They may also cause small vertical alignment issues. KaTeX has detailed metrics for glyphs in Latin, Greek, and Cyrillic, but other glyphs are treated as if they are each as tall as the letter M.

For Persian composite characters, a user-supplied plug-in is under development.

Layout

Annotation

$$\cancel{5}$$ \cancel{5} $$\overbrace{a+b+c}^{\text{note}}$$ \overbrace{a+b+c}^{\text{note}}
$$\bcancel{5}$$ \bcancel{5} $$\underbrace{a+b+c}_{\text{note}}$$ \underbrace{a+b+c}_{\text{note}}
$$\xcancel{ABC}$$ \xcancel{ABC} $$\not =$$ \not =
$$\sout{abc}$$ \sout{abc} $$\boxed{\pi=\frac c d}$$ \boxed{\pi=\frac c d}

\tag{hi} x+y^{2x} $$$$\tag{hi} x+y^{2x}$$$$

\tag*{hi} x+y^{2x} $$$$\tag*{hi} x+y^{2x}$$$$

Line Breaks

KaTeX 0.10.0+ will insert automatic line breaks in inline math after relations or binary operators such as “=” or “+”. These can be suppressed by \nobreak or by placing math inside a pair of braces, as in {F=ma}. \allowbreak will allow automatic line breaks at locations other than relations or operators.

Hard line breaks are \\\\ and \newline.

In display math, KaTeX does not insert automatic line breaks. It ignores display math hard line breaks when rendering option strict: true.

Vertical Layout

$$x_n$$ x_n $$\stackrel{!}{=}$$ \stackrel{!}{=} $$a \atop b$$ a \atop b
$$e^x$$ e^x $$\overset{!}{=}$$ \overset{!}{=} $$a\raisebox{0.25em}{b}c$$ a\raisebox{0.25em}{b}c
$$_u^o $$ _u^o $$\underset{!}{=}$$ \underset{!}{=}

The second argument of \raisebox can contain math if it is nested within $$…$$ delimiters, as in \raisebox{0.25em}{$$\frac a b$$}

Overlap and Spacing

$${=}\mathllap{/\,}$$ {=}\mathllap{/\,} $$\left(x^{\smash{2}}\right)$$ \left(x^{\smash{2}}\right)
$$\mathrlap{\,/}{=}$$ \mathrlap{\,/}{=} $$\sqrt{\smash[b]{y}}$$ \sqrt{\smash[b]{y}}

$$\displaystyle\sum{\mathclap{1\le i\le j\le n}} x{ij}$$ \sum_{\mathclap{1\le i\le j\le n}} x_{ij}

KaTeX also supports \llap, \rlap, and \clap, but they will take only text, not math, as arguments.

Spacing

Function Produces Function Produces
\, ³∕₁₈ em space \kern{distance} space, width = distance
\thinspace ³∕₁₈ em space \mkern{distance} space, width = distance
\: ⁴∕₁₈ em space \mskip{distance} space, width = distance
\medspace ⁴∕₁₈ em space \hskip{distance} space, width = distance
\; ⁵∕₁₈ em space \hspace{distance} space, width = distance
\thickspace ⁵∕₁₈ em space \hspace*{distance} space, width = distance
\enspace ½ em space \phantom{content} space the width and height of content
\quad 1 em space \hphantom{content} space the width of content
\qquad 2 em space \vphantom{content} a strut the height of content
~ non-breaking space \! – ³∕₁₈ em space
\<space> space \negthinspace – ³∕₁₈ em space
\nobreakspace non-breaking space \negmedspace – ⁴∕₁₈ em space
\space space \negthickspace – ⁵∕₁₈ em space

Notes:

distance will accept any of the KaTeX units.

\kern, \mkern, \mskip, and \hspace accept unbraced distances, as in: \kern1em.

\mkern and \mskip will not work in text mode and both will write a console warning for any unit except mu.

Logic and Set Theory

$$\forall$$ \forall $$\complement$$ \complement $$\therefore$$ \therefore $$\emptyset$$ \emptyset
$$\exists$$ \exists $$\subset$$ \subset $$\because$$ \because $$\empty$$ \empty
$$\exist$$ \exist $$\supset$$ \supset $$\mapsto$$ \mapsto $$\varnothing$$ \varnothing
$$\nexists$$ \nexists $$\mid$$ \mid $$\to$$ \to $$\implies$$ \implies
$$\in$$ \in $$\land$$ \land $$\gets$$ \gets $$\impliedby$$ \impliedby
$$\isin$$ \isin $$\lor$$ \lor $$\leftrightarrow$$ \leftrightarrow $$\iff$$ \iff
$$\notin$$ \notin $$\ni$$ \ni $$\notni$$ \notni $$\neg$$ \neg or \lnot

Direct Input: $$∀ ∴ ∁ ∵ ∃ ∣ ∈ ∉ ∋ ⊂ ⊃ ∧ ∨ ↦ → ← ↔ ¬$$ ℂ ℍ ℕ ℙ ℚ ℝ

Macros

$$\def\foo{x^2} \foo + \foo$$ \def\foo{x^2} \foo + \foo
$$\gdef\bar#1{#1^2} \bar{y} + \bar{y}$$ \gdef\bar#1{#1^2} \bar{y} + \bar{y}
\global\def\macroname#1#2…{definition}
\newcommand\macroname[numargs]{definition}
\renewcommand\macroname[numargs]{definition}
\providecommand\macroname[numargs]{definition}

Macros can also be defined in the KaTeX rendering options.

Macros accept up to nine arguments: #1, #2, etc.

\gdef and \global\def macros will persist between math expressions.

Available functions include:

\char \mathchoice \TextOrMath \@ifstar \@ifnextchar \@firstoftwo \@secondoftwo \relax

@ is a valid character for commands, as if \makeatletter were in effect.

Operators

Big Operators

$$\sum$$ \sum $$\prod$$ \prod $$\bigotimes$$ \bigotimes $$\bigvee$$ \bigvee
$$\int$$ \int $$\coprod$$ \coprod $$\bigoplus$$ \bigoplus $$\bigwedge$$ \bigwedge
$$\iint$$ \iint $$\intop$$ \intop $$\bigodot$$ \bigodot $$\bigcap$$ \bigcap
$$\iiint$$ \iiint $$\smallint$$ \smallint $$\biguplus$$ \biguplus $$\bigcup$$ \bigcup
$$\oint$$ \oint $$\oiint$$ \oiint $$\oiiint$$ \oiiint $$\bigsqcup$$ \bigsqcup

Direct Input: $$∫ ∬ ∭ ∮ ∏ ∐ ∑ ⋀ ⋁ ⋂ ⋃ ⨀ ⨁ ⨂ ⨄ ⨆$$

Binary Operators

$$+$$ + $$\cdot$$ \cdot $$\gtrdot$$ \gtrdot $$x \pmod a$$ x \pmod a
$$-$$ - $$\cdotp$$ \cdotp $$\intercal$$ \intercal $$x \pod a$$ x \pod a
$$/$$ / $$\centerdot$$ \centerdot $$\land$$ \land $$\rhd$$ \rhd
$$*$$ * $$\circ$$ \circ $$\leftthreetimes$$ \leftthreetimes $$\rightthreetimes$$ \rightthreetimes
$$\amalg$$ \amalg $$\circledast$$ \circledast $$\ldotp$$ \ldotp $$\rtimes$$ \rtimes
$$\And$$ \And $$\circledcirc$$ \circledcirc $$\lor$$ \lor $$\setminus$$ \setminus
$$\ast$$ \ast $$\circleddash$$ \circleddash $$\lessdot$$ \lessdot $$\smallsetminus$$ \smallsetminus
$$\barwedge$$ \barwedge $$\Cup$$ \Cup $$\lhd$$ \lhd $$\sqcap$$ \sqcap
$$\bigcirc$$ \bigcirc $$\cup$$ \cup $$\ltimes$$ \ltimes $$\sqcup$$ \sqcup
$$\bmod$$ \bmod $$\curlyvee$$ \curlyvee $$x \mod a$$ x\mod a $$\times$$ \times
$$\boxdot$$ \boxdot $$\curlywedge$$ \curlywedge $$\mp$$ \mp $$\unlhd$$ \unlhd
$$\boxminus$$ \boxminus $$\div$$ \div $$\odot$$ \odot $$\unrhd$$ \unrhd
$$\boxplus$$ \boxplus $$\divideontimes$$ \divideontimes $$\ominus$$ \ominus $$\uplus$$ \uplus
$$\boxtimes$$ \boxtimes $$\dotplus$$ \dotplus $$\oplus$$ \oplus $$\vee$$ \vee
$$\bullet$$ \bullet $$\doublebarwedge$$ \doublebarwedge $$\otimes$$ \otimes $$\veebar$$ \veebar
$$\Cap$$ \Cap $$\doublecap$$ \doublecap $$\oslash$$ \oslash $$\wedge$$ \wedge
$$\cap$$ \cap $$\doublecup$$ \doublecup $$\pm$$ \pm or \plusmn $$\wr$$ \wr

Direct Input: $$+ - / * ⋅ ± × ÷ ∓ ∔ ∧ ∨ ∩ ∪ ≀ ⊎ ⊓ ⊔ ⊕ ⊖ ⊗ ⊘ ⊙ ⊚ ⊛ ⊝$$

Fractions and Binomials

$$\frac{a}{b}$$ \frac{a}{b} $$\tfrac{a}{b}$$ \tfrac{a}{b} $$\genfrac ( ] {2pt}{1}a{a+1}$$ \genfrac ( ] {2pt}{1}a{a+1}
$${a \over b}$$ {a \over b} $$\dfrac{a}{b}$$ \dfrac{a}{b} $${a \above{2pt} b+1}$$ {a \above{2pt} b+1}
$$a/b$$ a/b $$\cfrac{a}{1 + \cfrac{1}{b}}$$ \cfrac{a}{1 + \cfrac{1}{b}}
$$\binom{n}{k}$$ \binom{n}{k} $$\dbinom{n}{k}$$ \dbinom{n}{k} $${n\brace k}$$ {n\brace k}
$${n \choose k}$$ {n \choose k} $$\tbinom{n}{k}$$ \tbinom{n}{k} $${n\brack k}$$ {n\brack k}

Math Operators

$$\arcsin$$ \arcsin $$\cotg$$ \cotg $$\ln$$ \ln $$\det$$ \det
$$\arccos$$ \arccos $$\coth$$ \coth $$\log$$ \log $$\gcd$$ \gcd
$$\arctan$$ \arctan $$\csc$$ \csc $$\sec$$ \sec $$\inf$$ \inf
$$\arctg$$ \arctg $$\ctg$$ \ctg $$\sin$$ \sin $$\lim$$ \lim
$$\arcctg$$ \arcctg $$\cth$$ \cth $$\sinh$$ \sinh $$\liminf$$ \liminf
$$\arg$$ \arg $$\deg$$ \deg $$\sh$$ \sh $$\limsup$$ \limsup
$$\ch$$ \ch $$\dim$$ \dim $$\tan$$ \tan $$\max$$ \max
$$\cos$$ \cos $$\exp$$ \exp $$\tanh$$ \tanh $$\min$$ \min
$$\cosec$$ \cosec $$\hom$$ \hom $$\tg$$ \tg $$\Pr$$ \Pr
$$\cosh$$ \cosh $$\ker$$ \ker $$\th$$ \th $$\sup$$ \sup
$$\cot$$ \cot $$\lg$$ \lg $$\operatorname{f}$$ \operatorname{f}

Functions on the right column of this table can take \limits.

\sqrt

$$\sqrt{x}$$ \sqrt{x}

$$\sqrt[3]{x}$$ \sqrt[3]{x}

Relations

$$\stackrel{!}{=}$$ \stackrel{!}{=}

$$=$$ = $$\eqcirc$$ \eqcirc $$\lesseqgtr$$ \lesseqgtr $$\sqsupset$$ \sqsupset
$$<$$ < $$\eqcolon$$ \eqcolon $$\lesseqqgtr$$ \lesseqqgtr $$\sqsupseteq$$ \sqsupseteq
$$>$$ > $$\Eqcolon$$ \Eqcolon $$\lessgtr$$ \lessgtr $$\Subset$$ \Subset
$$:$$ : $$\eqqcolon$$ \eqqcolon $$\lesssim$$ \lesssim $$\subset$$ \subset or \sub
$$\approx$$ \approx $$\Eqqcolon$$ \Eqqcolon $$\ll$$ \ll $$\subseteq$$ \subseteq or \sube
$$\approxeq$$ \approxeq $$\eqsim$$ \eqsim $$\lll$$ \lll $$\subseteqq$$ \subseteqq
$$\asymp$$ \asymp $$\eqslantgtr$$ \eqslantgtr $$\llless$$ \llless $$\succ$$ \succ
$$\backepsilon$$ \backepsilon $$\eqslantless$$ \eqslantless $$\lt$$ \lt $$\succapprox$$ \succapprox
$$\backsim$$ \backsim $$\equiv$$ \equiv $$\mid$$ \mid $$\succcurlyeq$$ \succcurlyeq
$$\backsimeq$$ \backsimeq $$\fallingdotseq$$ \fallingdotseq $$\models$$ \models $$\succeq$$ \succeq
$$\between$$ \between $$\frown$$ \frown $$\multimap$$ \multimap $$\succsim$$ \succsim
$$\bowtie$$ \bowtie $$\ge$$ \ge $$\owns$$ \owns $$\Supset$$ \Supset
$$\bumpeq$$ \bumpeq $$\geq$$ \geq $$\parallel$$ \parallel $$\supset$$ \supset
$$\Bumpeq$$ \Bumpeq $$\geqq$$ \geqq $$\perp$$ \perp $$\supseteq$$ \supseteq or \supe
$$\circeq$$ \circeq $$\geqslant$$ \geqslant $$\pitchfork$$ \pitchfork $$\supseteqq$$ \supseteqq
$$\colonapprox$$ \colonapprox $$\gg$$ \gg $$\prec$$ \prec $$\thickapprox$$ \thickapprox
$$\Colonapprox$$ \Colonapprox $$\ggg$$ \ggg $$\precapprox$$ \precapprox $$\thicksim$$ \thicksim
$$\coloneq$$ \coloneq $$\gggtr$$ \gggtr $$\preccurlyeq$$ \preccurlyeq $$\trianglelefteq$$ \trianglelefteq
$$\Coloneq$$ \Coloneq $$\gt$$ \gt $$\preceq$$ \preceq $$\triangleq$$ \triangleq
$$\coloneqq$$ \coloneqq $$\gtrapprox$$ \gtrapprox $$\precsim$$ \precsim $$\trianglerighteq$$ \trianglerighteq
$$\Coloneqq$$ \Coloneqq $$\gtreqless$$ \gtreqless $$\propto$$ \propto $$\varpropto$$ \varpropto
$$\colonsim$$ \colonsim $$\gtreqqless$$ \gtreqqless $$\risingdotseq$$ \risingdotseq $$\vartriangle$$ \vartriangle
$$\Colonsim$$ \Colonsim $$\gtrless$$ \gtrless $$\shortmid$$ \shortmid $$\vartriangleleft$$ \vartriangleleft
$$\cong$$ \cong $$\gtrsim$$ \gtrsim $$\shortparallel$$ \shortparallel $$\vartriangleright$$ \vartriangleright
$$\curlyeqprec$$ \curlyeqprec $$\in$$ \in or \isin $$\sim$$ \sim $$\vcentcolon$$ \vcentcolon
$$\curlyeqsucc$$ \curlyeqsucc $$\Join$$ \Join $$\simeq$$ \simeq $$\vdash$$ \vdash
$$\dashv$$ \dashv $$\le$$ \le $$\smallfrown$$ \smallfrown $$\vDash$$ \vDash
$$\dblcolon$$ \dblcolon $$\leq$$ \leq $$\smallsmile$$ \smallsmile $$\Vdash$$ \Vdash
$$\doteq$$ \doteq $$\leqq$$ \leqq $$\smile$$ \smile $$\Vvdash$$ \Vvdash
$$\Doteq$$ \Doteq $$\leqslant$$ \leqslant $$\sqsubset$$ \sqsubset
$$\doteqdot$$ \doteqdot $$\lessapprox$$ \lessapprox $$\sqsubseteq$$ \sqsubseteq

Direct Input: $$= < > : ∈ ∋ ∝ ∼ ∽ ≂ ≃ ≅ ≈ ≊ ≍ ≎ ≏ ≐ ≑ ≒ ≓ ≖ ≗ ≜ ≡ ≤ ≥ ≦ ≧ ≫ ≬ ≳ ≷ ≺ ≻ ≼ ≽ ≾ ≿ ⊂ ⊃ ⊆ ⊇ ⊏ ⊐ ⊑ ⊒ ⊢ ⊣ ⊩ ⊪ ⊸ ⋈ ⋍ ⋐ ⋑ ⋔ ⋙ ⋛ ⋞ ⋟ ⌢ ⌣ ⩾ ⪆ ⪌ ⪕ ⪖ ⪯ ⪰ ⪷ ⪸ ⫅ ⫆ ≲ ⩽ ⪅ ≶ ⋚ ⪋ ⟂ ⊨$$ ≔ ≕ ⩴

Negated Relations

$$\not =$$ \not =

$$\gnapprox$$ \gnapprox $$\ngeqslant$$ \ngeqslant $$\nsubseteq$$ \nsubseteq $$\precneqq$$ \precneqq
$$\gneq$$ \gneq $$\ngtr$$ \ngtr $$\nsubseteqq$$ \nsubseteqq $$\precnsim$$ \precnsim
$$\gneqq$$ \gneqq $$\nleq$$ \nleq $$\nsucc$$ \nsucc $$\subsetneq$$ \subsetneq
$$\gnsim$$ \gnsim $$\nleqq$$ \nleqq $$\nsucceq$$ \nsucceq $$\subsetneqq$$ \subsetneqq
$$\gvertneqq$$ \gvertneqq $$\nleqslant$$ \nleqslant $$\nsupseteq$$ \nsupseteq $$\succnapprox$$ \succnapprox
$$\lnapprox$$ \lnapprox $$\nless$$ \nless $$\nsupseteqq$$ \nsupseteqq $$\succneqq$$ \succneqq
$$\lneq$$ \lneq $$\nmid$$ \nmid $$\ntriangleleft$$ \ntriangleleft $$\succnsim$$ \succnsim
$$\lneqq$$ \lneqq $$\notin$$ \notin $$\ntrianglelefteq$$ \ntrianglelefteq $$\supsetneq$$ \supsetneq
$$\lnsim$$ \lnsim $$\notni$$ \notni $$\ntriangleright$$ \ntriangleright $$\supsetneqq$$ \supsetneqq
$$\lvertneqq$$ \lvertneqq $$\nparallel$$ \nparallel $$\ntrianglerighteq$$ \ntrianglerighteq $$\varsubsetneq$$ \varsubsetneq
$$\ncong$$ \ncong $$\nprec$$ \nprec $$\nvdash$$ \nvdash $$\varsubsetneqq$$ \varsubsetneqq
$$\ne$$ \ne $$\npreceq$$ \npreceq $$\nvDash$$ \nvDash $$\varsupsetneq$$ \varsupsetneq
$$\neq$$ \neq $$\nshortmid$$ \nshortmid $$\nVDash$$ \nVDash $$\varsupsetneqq$$ \varsupsetneqq
$$\ngeq$$ \ngeq $$\nshortparallel$$ \nshortparallel $$\nVdash$$ \nVdash
$$\ngeqq$$ \ngeqq $$\nsim$$ \nsim $$\precnapprox$$ \precnapprox

Direct Input: $$∉ ∌ ∤ ∦ ≁ ≆ ≠ ≨ ≩ ≮ ≯ ≰ ≱ ⊀ ⊁ ⊈ ⊉ ⊊ ⊋ ⊬ ⊭ ⊮ ⊯ ⋠ ⋡ ⋦ ⋧ ⋨ ⋩ ⋬ ⋭ ⪇ ⪈ ⪉ ⪊ ⪵ ⪶ ⪹ ⪺ ⫋ ⫌$$

Arrows

$$\circlearrowleft$$ \circlearrowleft $$\leftharpoonup$$ \leftharpoonup $$\rArr$$ \rArr
$$\circlearrowright$$ \circlearrowright $$\leftleftarrows$$ \leftleftarrows $$\rarr$$ \rarr
$$\curvearrowleft$$ \curvearrowleft $$\leftrightarrow$$ \leftrightarrow $$\restriction$$ \restriction
$$\curvearrowright$$ \curvearrowright $$\Leftrightarrow$$ \Leftrightarrow $$\rightarrow$$ \rightarrow
$$\Darr$$ \Darr $$\leftrightarrows$$ \leftrightarrows $$\Rightarrow$$ \Rightarrow
$$\dArr$$ \dArr $$\leftrightharpoons$$ \leftrightharpoons $$\rightarrowtail$$ \rightarrowtail
$$\darr$$ \darr $$\leftrightsquigarrow$$ \leftrightsquigarrow $$\rightharpoondown$$ \rightharpoondown
$$\dashleftarrow$$ \dashleftarrow $$\Lleftarrow$$ \Lleftarrow $$\rightharpoonup$$ \rightharpoonup
$$\dashrightarrow$$ \dashrightarrow $$\longleftarrow$$ \longleftarrow $$\rightleftarrows$$ \rightleftarrows
$$\downarrow$$ \downarrow $$\Longleftarrow$$ \Longleftarrow $$\rightleftharpoons$$ \rightleftharpoons
$$\Downarrow$$ \Downarrow $$\longleftrightarrow$$ \longleftrightarrow $$\rightrightarrows$$ \rightrightarrows
$$\downdownarrows$$ \downdownarrows $$\Longleftrightarrow$$ \Longleftrightarrow $$\rightsquigarrow$$ \rightsquigarrow
$$\downharpoonleft$$ \downharpoonleft $$\longmapsto$$ \longmapsto $$\Rrightarrow$$ \Rrightarrow
$$\downharpoonright$$ \downharpoonright $$\longrightarrow$$ \longrightarrow $$\Rsh$$ \Rsh
$$\gets$$ \gets $$\Longrightarrow$$ \Longrightarrow $$\searrow$$ \searrow
$$\Harr$$ \Harr $$\looparrowleft$$ \looparrowleft $$\swarrow$$ \swarrow
$$\hArr$$ \hArr $$\looparrowright$$ \looparrowright $$\to$$ \to
$$\harr$$ \harr $$\Lrarr$$ \Lrarr $$\twoheadleftarrow$$ \twoheadleftarrow
$$\hookleftarrow$$ \hookleftarrow $$\lrArr$$ \lrArr $$\twoheadrightarrow$$ \twoheadrightarrow
$$\hookrightarrow$$ \hookrightarrow $$\lrarr$$ \lrarr $$\Uarr$$ \Uarr
$$\iff$$ \iff $$\Lsh$$ \Lsh $$\uArr$$ \uArr
$$\impliedby$$ \impliedby $$\mapsto$$ \mapsto $$\uarr$$ \uarr
$$\implies$$ \implies $$\nearrow$$ \nearrow $$\uparrow$$ \uparrow
$$\Larr$$ \Larr $$\nleftarrow$$ \nleftarrow $$\Uparrow$$ \Uparrow
$$\lArr$$ \lArr $$\nLeftarrow$$ \nLeftarrow $$\updownarrow$$ \updownarrow
$$\larr$$ \larr $$\nleftrightarrow$$ \nleftrightarrow $$\Updownarrow$$ \Updownarrow
$$\leadsto$$ \leadsto $$\nLeftrightarrow$$ \nLeftrightarrow $$\upharpoonleft$$ \upharpoonleft
$$\leftarrow$$ \leftarrow $$\nrightarrow$$ \nrightarrow $$\upharpoonright$$ \upharpoonright
$$\Leftarrow$$ \Leftarrow $$\nRightarrow$$ \nRightarrow $$\upuparrows$$ \upuparrows
$$\leftarrowtail$$ \leftarrowtail $$\nwarrow$$ \nwarrow
$$\leftharpoondown$$ \leftharpoondown $$\Rarr$$ \Rarr

Direct Input: $$← ↑ → ↓ ↔ ↕ ↖ ↗ ↘ ↙ ↚ ↛ ↞ ↠ ↢ ↣ ↦ ↩ ↪ ↫ ↬ ↭ ↮ ↰ ↱↶ ↷ ↺ ↻ ↼ ↽ ↾ ↾ ↿ ⇀ ⇁ ⇂ ⇃ ⇄ ⇆ ⇇ ⇈ ⇉ ⇊ ⇋ ⇌⇍ ⇎ ⇏ ⇐ ⇑ ⇒ ⇓ ⇔ ⇕ ⇚ ⇛ ⇝ ⇠ ⇢ ⟵ ⟶ ⟷ ⟸ ⟹ ⟺ ⟼$$ ↽

Extensible Arrows

$$\xleftarrow{abc}$$ \xleftarrow{abc} $$\xrightarrow[under]{over}$$ \xrightarrow[under]{over}
$$\xLeftarrow{abc}$$ \xLeftarrow{abc} $$\xRightarrow{abc}$$ \xRightarrow{abc}
$$\xleftrightarrow{abc}$$ \xleftrightarrow{abc} $$\xLeftrightarrow{abc}$$ \xLeftrightarrow{abc}
$$\xhookleftarrow{abc}$$ \xhookleftarrow{abc} $$\xhookrightarrow{abc}$$ \xhookrightarrow{abc}
$$\xtwoheadleftarrow{abc}$$ \xtwoheadleftarrow{abc} $$\xtwoheadrightarrow{abc}$$ \xtwoheadrightarrow{abc}
$$\xleftharpoonup{abc}$$ \xleftharpoonup{abc} $$\xrightharpoonup{abc}$$ \xrightharpoonup{abc}
$$\xleftharpoondown{abc}$$ \xleftharpoondown{abc} $$\xrightharpoondown{abc}$$ \xrightharpoondown{abc}
$$\xleftrightharpoons{abc}$$ \xleftrightharpoons{abc} $$\xrightleftharpoons{abc}$$ \xrightleftharpoons{abc}
$$\xtofrom{abc}$$ \xtofrom{abc} $$\xmapsto{abc}$$ \xmapsto{abc}
$$\xlongequal{abc}$$ \xlongequal{abc}

Extensible arrows all can take an optional argument in the same manner
as \xrightarrow[under]{over}.

Style, Color, Size, and Font

Class Assignment

\mathbin \mathclose \mathinner \mathop
\mathopen \mathord \mathpunct \mathrel

Color

$$\color{blue} F=ma$$ \color{blue} F=ma

Note that KaTeX \color acts like a switch. This aligns with LaTeX and differs from MathJax. Other KaTeX color functions expect the content to be a function argument:

$$\textcolor{blue}{F=ma}$$ \textcolor{blue}{F=ma}
$$\textcolor{#228B22}{F=ma}$$ \textcolor{#228B22}{F=ma}
$$\colorbox{aqua}{A}$$ \colorbox{aqua}{A}
$$\fcolorbox{red}{aqua}{A}$$ \fcolorbox{red}{aqua}{A}

For color definition, KaTeX color functions will accept the standard HTML predefined color names. They will also accept an RGB argument in CSS hexa­decimal style. The “#” is optional before a six-digit specification.

Font

$$\mathrm{Ab0}$$ \mathrm{Ab0} $$\mathbf{Ab0}$$ \mathbf{Ab0} $$\mathit{Ab}$$ \mathit{Ab}
$$\textrm{Ab0}$$ \textrm{Ab0} $$\textbf{Ab0}$$ \textbf{Ab0} $$\textit{Ab}$$ \textit{Ab}
$$\rm Ab0$$ \rm Ab0 $$\bf Ab0$$ \bf Ab0 $$\it Ab$$ \it Ab
$$\textnormal{Ab0}$$ \textnormal{Ab0} $$\bold{Ab0}$$ \bold{Ab0} $$\Bbb{AB}$$ \Bbb{AB}
$$\text{Ab0}$$ \text{Ab0} $$\boldsymbol{Ab}$$ \boldsymbol{Ab} $$\mathbb{AB}$$ \mathbb{AB}
$$\mathsf{Ab0}$$ \mathsf{Ab0} $$\bm{Ab}$$ \bm{Ab} $$\frak{Ab0}$$ \frak{Ab0}
$$\textsf{Ab0}$$ \textsf{Ab0} $$\mathtt{Ab0}$$ \mathtt{Ab0} $$\mathfrak{Ab0}$$ \mathfrak{Ab0}
$$\sf Ab0$$ \sf Ab0 $$\texttt{Ab0}$$ \texttt{Ab0} $$\mathcal{AB0}$$ \mathcal{AB0}
$$\tt Ab0$$ \tt Ab0 $$\mathscr{AB}$$ \mathscr{AB}

One can stack font family, font weight, and font shape by using the \textXX versions of the font functions. So \textsf{\textbf{H}} will produce $$\textsf{\textbf{H}}$$. The other versions do not stack, e.g., \mathsf{\mathbf{H}} will produce $$\mathsf{\mathbf{H}}$$.

In cases where KaTeX fonts do not have a bold glyph, \pmb can simulate one. For example, \pmb{\mu} renders as : $$\pmb{\mu}$$

Size

$$\Huge AB$$ \Huge AB $$\normalsize AB$$ \normalsize AB
$$\huge AB$$ \huge AB $$\small AB$$ \small AB
$$\LARGE AB$$ \LARGE AB $$\footnotesize AB$$ \footnotesize AB
$$\Large AB$$ \Large AB $$\scriptsize AB$$ \scriptsize AB
$$\large AB$$ \large AB $$\tiny AB$$ \tiny AB

Style

|| |:——————————————————-| |$$\displaystyle\sum{i=1}^n$$ \displaystyle\sum_{i=1}^n |$$\textstyle\sum{i=1}^n$$ \textstyle\sum_{i=1}^n |$$\scriptstyle x$$ \scriptstyle x         (The size of a first sub/superscript) |$$\scriptscriptstyle x$$ \scriptscriptstyle x (The size of subsequent sub/superscripts) |$$\lim\limits_x$$ \lim\limits_x |$$\lim\nolimits_x$$ \lim\nolimits_x |$$\verb!x^2!$$ \verb!x^2!

\text{…} will accept nested $$…$$ fragments and render them in math mode.

Symbols and Punctuation

% comment $$\dots$$ \dots $$\KaTeX$$ \KaTeX
$$\%$$ \% $$\cdots$$ \cdots $$\LaTeX$$ \LaTeX
$$#$$ \# $$\ddots$$ \ddots $$\TeX$$ \TeX
$$&$$ \& $$\ldots$$ \ldots $$\nabla$$ \nabla
$$_$$ \_ $$\vdots$$ \vdots $$\infty$$ \infty
$$\text{\textunderscore}$$ \text{\textunderscore} $$\dotsb$$ \dotsb $$\infin$$ \infin
$$\text{–}$$ \text{--} $$\dotsc$$ \dotsc $$\checkmark$$ \checkmark
$$\text{\textendash}$$ \text{\textendash} $$\dotsi$$ \dotsi $$\dag$$ \dag
$$\text{—}$$ \text{---} $$\dotsm$$ \dotsm $$\dagger$$ \dagger
$$\text{\textemdash}$$ \text{\textemdash} $$\dotso$$ \dotso $$\text{\textdagger}$$ \text{\textdagger}
$$\text{\textasciitilde}$$ \text{\textasciitilde} $$\sdot$$ \sdot $$\ddag$$ \ddag
$$$$ <code> $$\mathellipsis$$ \mathellipsis $$\ddagger$$ \ddagger
$$\text{\textquoteleft}$$ text{\textquoteleft} $$\text{\textellipsis}$$ \text{\textellipsis} $$\text{\textdaggerdbl}$$ \text{\textdaggerdbl}
$$\lq$$ \lq $$\Box$$ \Box $$\Dagger$$ \Dagger
$$\text{\textquoteright}$$ \text{\textquoteright} $$\square$$ \square $$\angle$$ \angle
$$\rq$$ \rq $$\blacksquare$$ \blacksquare $$\measuredangle$$ \measuredangle
$$\text{\textquotedblleft}$$ \text{\textquotedblleft} $$\triangle$$ \triangle $$\sphericalangle$$ \sphericalangle
$$“$$ " $$\triangledown$$ \triangledown $$\top$$ \top
$$\text{\textquotedblright}$$ \text{\textquotedblright} $$\triangleleft$$ \triangleleft $$\bot$$ \bot
$$\colon$$ \colon $$\triangleright$$ \triangleright $$\$$$$ \$$
$$\backprime$$ \backprime $$\bigtriangledown$$ \bigtriangledown $$\text{\textdollar}$$ \text{\textdollar}
$$\prime$$ \prime $$\bigtriangleup$$ \bigtriangleup $$\pounds$$ \pounds
$$\text{\textless}$$ \text{\textless} $$\blacktriangle$$ \blacktriangle $$\mathsterling$$ \mathsterling
$$\text{\textgreater}$$ \text{\textgreater} $$\blacktriangledown$$ \blacktriangledown $$\text{\textsterling}$$ \text{\textsterling}
$$\text{\textbar}$$ \text{\textbar} $$\blacktriangleleft$$ \blacktriangleleft $$\yen$$ \yen
$$\text{\textbardbl}$$ \text{\textbardbl} $$\blacktriangleright$$ \blacktriangleright $$\surd$$ \surd
$$\text{\textbraceleft}$$ \text{\textbraceleft} $$\diamond$$ \diamond $$\degree$$ \degree
$$\text{\textbraceright}$$ \text{\textbraceright} $$\Diamond$$ \Diamond $$\text{\textdegree}$$ \text{\textdegree}
$$\text{\P}$$ \text{\P} $$\lozenge$$ \lozenge $$\mho$$ \mho
$$\text{\S}$$ \text{\S} $$\blacklozenge$$ \blacklozenge $$\diagdown$$ \diagdown
$$\text{\sect}$$ \text{\sect} $$\star$$ \star $$\diagup$$ \diagup
$$\copyright$$ \copyright $$\bigstar$$ \bigstar $$\flat$$ \flat
$$\circledR$$ \circledR $$\clubsuit$$ \clubsuit $$\natural$$ \natural
$$\text{\textregistered}$$ \text{\textregistered} $$\clubs$$ \clubs $$\sharp$$ \sharp
$$\circledS$$ \circledS $$\diamondsuit$$ \diamondsuit $$\heartsuit$$ \heartsuit
$$\text{\textcircled a}$$ \text{\textcircled a} $$\diamonds$$ \diamonds $$\hearts$$ \hearts
$$\maltese$$ \maltese $$\spadesuit$$ \spadesuit $$\spades$$ \spades

Direct Input: $$£ ¥ ∇ ∞ · ∠ ∡ ∢ ♠ ♡ ♢ ♣ ♭ ♮ ♯ ✓ … ⋮ ⋯ ⋱ !$$ ‼

Units

In KaTeX, units are proportioned as they are in TeX.
KaTeX units are different than CSS units.

KaTeX Unit Value KaTeX Unit Value
em CSS em bp 1/72​ inch × F × G
ex CSS ex pc 12 KaTeX pt
mu 118 CSS em dd 1238/1157​ KaTeX pt
pt 172.27 inch × F × G cc 148561157 KaTeX pt
mm 1 mm × F × G nd 685642 KaTeX pt
cm 1 cm × F × G nc 1370/107​ KaTeX pt
in 1 inch × F × G sp 165536 KaTeX pt

where:

F = (font size of surrounding HTML text)/(10 pt)

G = 1.21 by default, because KaTeX font-size is normally 1.21 × the surrounding font size. This value can be overridden by the CSS of an HTML page.

The effect of style and size:

Unit textstyle scriptscript huge
em or ex $$\rule{1em}{1em}$$ $$\scriptscriptstyle\rule{1em}{1em}$$ $$\huge\rule{1em}{1em}$$
mu $$\rule{18mu}{18mu}$$ $$\scriptscriptstyle\rule{18mu}{18mu}$$ $$\huge\rule{18mu}{18mu}$$
others $$\rule{10pt}{10pt}$$ $$\scriptscriptstyle\rule{10pt}{10pt}$$ $$\huge\rule{10pt}{10pt}$$
comments loading