This is a list of TeX functions supported by KaTeX. It is sorted into logical groups.
There is a similar Support Table, sorted alphabetically, that lists both supported and un-supported functions.
$$a’$$ a' |
$$\tilde{a}$$ \tilde{a} |
$$\mathring{g}$$ \mathring{g} |
$$a”$$ a'' |
$$\widetilde{ac}$$ \widetilde{ac} |
$$\overgroup{AB}$$ \overgroup{AB} |
$$a^{\prime}$$ a^{\prime} |
$$\utilde{AB}$$ \utilde{AB} |
$$\undergroup{AB}$$ \undergroup{AB} |
$$\acute{a}$$ \acute{a} |
$$\vec{F}$$ \vec{F} |
$$\Overrightarrow{AB}$$ \Overrightarrow{AB} |
$$\bar{y}$$ \bar{y} |
$$\overleftarrow{AB}$$ \overleftarrow{AB} |
$$\overrightarrow{AB}$$ \overrightarrow{AB} |
$$\breve{a}$$ \breve{a} |
$$\underleftarrow{AB}$$ \underleftarrow{AB} |
$$\underrightarrow{AB}$$ \underrightarrow{AB} |
$$\check{a}$$ \check{a} |
$$\overleftharpoon{ac}$$ \overleftharpoon{ac} |
$$\overrightharpoon{ac}$$ \overrightharpoon{ac} |
$$\dot{a}$$ \dot{a} |
$$\overleftrightarrow{AB}$$ \overleftrightarrow{AB} |
$$\overbrace{AB}$$ \overbrace{AB} |
$$\ddot{a}$$ \ddot{a} |
$$\underleftrightarrow{AB}$$ \underleftrightarrow{AB} |
$$\underbrace{AB}$$ \underbrace{AB} |
$$\grave{a}$$ \grave{a} |
$$\overline{AB}$$ \overline{AB} |
$$\overlinesegment{AB}$$ \overlinesegment{AB} |
$$\hat{\theta}$$ \hat{\theta} |
$$\underline{AB}$$ \underline{AB} |
$$\underlinesegment{AB}$$ \underlinesegment{AB} |
$$\widehat{ac}$$ \widehat{ac} |
$$\widecheck{ac}$$ \widecheck{ac} |
Accent functions inside \\text{…}
$$\text{\‘{a}}$$ \'{a} |
$$\text{~{a}}$$ \~{a} |
$$\text{.{a}}$$ \.{a} |
$$\text{\H{a}}$$ \H{a} |
$$\text{`{a}}$$ \\`{a} |
$$\text{\={a}}$$ \={a} |
$$\text{\“{a}}$$ \"{a} |
$$\text{\v{a}}$$ \v{a} |
$$\text{\^{a}}$$ \^{a} |
$$\text{\u{a}}$$ \u{a} |
$$\text{\r{a}}$$ \r{a} |
See also letters
$$( )$$ ( ) |
$$\lt~\gt$$ \lt \gt |
$$⌈~⌉$$ ⌈ ⌉ |
$$\lceil~\rceil$$ \lceil $$~~~~~$$ \rceil |
$$\uparrow$$ \uparrow |
$$[ ]$$ [ ] |
$$\lbrack~\rbrack$$ \lbrack $$~~~~$$ \rbrack |
$$⌊~⌋$$ ⌊ ⌋ |
$$\lfloor~\rfloor$$ \lfloor $$~~~~~$$ \rfloor |
$$\downarrow$$ \downarrow |
$${ }$$ \{ \} |
$$\lbrace \rbrace$$ \lbrace $$~~~~$$ \rbrace |
$$⎰⎱$$ ⎰⎱ |
$$\lmoustache \rmoustache$$ \lmoustache $$~~~~$$ \rmoustache |
$$\updownarrow$$ \updownarrow |
$$⟨~⟩$$ ⟨ ⟩ |
$$\langle~\rangle$$ \langle $$~~~~$$ \rangle |
$$⟮~⟯$$ ⟮ ⟯ |
$$\lgroup~\rgroup$$ \lgroup $$~~~~~$$ \rgroup |
$$\Uparrow$$ \Uparrow |
$$\vert$$
|
$$\vert$$ \vert |
$$┌ ┐$$ ┌ ┐ |
$$\ulcorner \urcorner$$ \ulcorner $$~~~~$$ \urcorner |
|
$$\Vert$$ | |
$$\Vert$$ \Vert |
$$└ ┘$$ └ ┘ |
$$\llcorner \lrcorner$$ \llcorner $$~~~~$$ \lrcorner |
$$\Updownarrow$$ \Updownarrow |
$$\lvert~\rvert$$ \lvert $$~~~~$$ \rvert |
$$\lVert~\rVert$$ \lVert $$~~~~~$$ \rVert |
\left. |
\right. |
$$\backslash$$ \backslash |
$$\lang~\rang$$ \lang $$~~~~$$ \rang |
Delimiter Sizing
$$\left(\LARGE{AB}\right)$$ \left(\LARGE{AB}\right)
$$( \big( \Big( \bigg( \Bigg($$ ( \big( \Big( \bigg( \Bigg(
\left |
\big |
\bigl |
\bigm |
\bigr |
\middle |
\Big |
\Bigl |
\Bigm |
\Bigr |
\right |
\bigg |
\biggl |
\biggm |
\biggr |
\Bigg |
\Biggl |
\Biggm |
\Biggr |
$$\begin{matrix} a & b \\ c & d \end{matrix}$$ | \begin{matrix} a & b \\\\ c & d \end{matrix} |
$$\begin{array}{cc}a & b\\c & d\end{array}$$ | \begin{array}{cc} a & b \\\\ c & d \end{array} |
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$ | \begin{pmatrix} a & b \\\\ c & d \end{pmatrix} |
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$ | \begin{bmatrix} a & b \\\\ c & d \end{bmatrix} |
$$\begin{vmatrix} a & b \\ c & d \end{vmatrix}$$ | \begin{vmatrix} a & b \\\\ c & d \end{vmatrix} |
$$\begin{Vmatrix} a & b \\ c & d \end{Vmatrix}$$ | \begin{Vmatrix} a & b \\\\ c & d \end{Vmatrix} |
$$\begin{Bmatrix} a & b \\ c & d \end{Bmatrix}$$ | \begin{Bmatrix} a & b \\\\ c & d \end{Bmatrix} |
$$\def\arraystretch{1.5}\begin{array}{c:c:c} a & b & c \\ \hline d & e & f \\ \hdashline g & h & i \end{array}$$ | \def\arraystretch{1.5} \begin{array}{c:c:c} a & b & c \\\\ \hline d & e & f \\\\ \hdashline g & h & i \end{array} |
$$\begin{aligned} a&=b+c \\ d+e&=f \end{aligned}$$ | \begin{aligned} a&=b+c \\\\ d+e&=f \end{aligned} |
$$\begin{alignedat}{2}10&x+&3&y=2\\3&x+&13&y=4\end{alignedat}$$ | \begin{alignedat}{2} 10&x+ &3&y = 2 \\\\ 3&x+&13&y = 4 \end{alignedat} |
$$\begin{gathered} a=b \\ e=b+c \end{gathered}$$ | \begin{gathered} a=b \\\\ e=b+c \end{gathered} |
$$x = \begin{cases} a &\text{if } b \\ c &\text{if } d \end{cases}$$ | x = \begin{cases} a &\text{if } b \\\\ c &\text{if } d \end{cases} |
KaTeX also supports darray
and dcases
.
Acceptable line separators include: \\\\
, \cr
, \\\\[distance]
, and \cr[distance]
. Distance can be written with any of the KaTeX units.
The {array}
environment supports |
and :
vertical separators.
The {array}
environment does not yet support \cline
or \multicolumn
.
Greek Letters
Direct Input: $$Α Β Γ Δ Ε Ζ Η Θ Ι \allowbreak Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω$$
$$\allowbreak α β γ δ ϵ ζ η θ ι κ λ μ ν ξ o π \allowbreak ρ σ τ υ ϕ χ ψ ω ε ϑ ϖ ϱ ς φ$$
$$\Alpha$$ \Alpha |
$$\Beta$$ \Beta |
$$\Gamma$$ \Gamma |
$$\Delta$$ \Delta |
$$\Epsilon$$ \Epsilon |
$$\Zeta$$ \Zeta |
$$\Eta$$ \Eta |
$$\Theta$$ \Theta |
$$\Iota$$ \Iota |
$$\Kappa$$ \Kappa |
$$\Lambda$$ \Lambda |
$$\Mu$$ \Mu |
$$\Nu$$ \Nu |
$$\Xi$$ \Xi |
$$\Omicron$$ \Omicron |
$$\Pi$$ \Pi |
$$\Sigma$$ \Sigma |
$$\Tau$$ \Tau |
$$\Upsilon$$ \Upsilon |
$$\Phi$$ \Phi |
$$\Chi$$ \Chi |
$$\Psi$$ \Psi |
$$\Omega$$ \Omega |
|
$$\varGamma$$ \varGamma |
$$\varDelta$$ \varDelta |
$$\varTheta$$ \varTheta |
$$\varLambda$$ \varLambda |
$$\varXi$$ \varXi |
$$\varPi$$ \varPi |
$$\varSigma$$ \varSigma |
$$\varUpsilon$$ \varUpsilon |
$$\varPhi$$ \varPhi |
$$\varPsi$$ \varPsi |
$$\varOmega$$ \varOmega |
|
$$\alpha$$ \alpha |
$$\beta$$ \beta |
$$\gamma$$ \gamma |
$$\delta$$ \delta |
$$\epsilon$$ \epsilon |
$$\zeta$$ \zeta |
$$\eta$$ \eta |
$$\theta$$ \theta |
$$\iota$$ \iota |
$$\kappa$$ \kappa |
$$\lambda$$ \lambda |
$$\mu$$ \mu |
$$\nu$$ \nu |
$$\xi$$ \xi |
$$\omicron$$ \omicron |
$$\pi$$ \pi |
$$\rho$$ \rho |
$$\sigma$$ \sigma |
$$\tau$$ \tau |
$$\upsilon$$ \upsilon |
$$\phi$$ \phi |
$$\chi$$ \chi |
$$\psi$$ \psi |
$$\omega$$ \omega |
$$\varepsilon$$ \varepsilon |
$$\varkappa$$ \varkappa |
$$\vartheta$$ \vartheta |
$$\thetasym$$ \thetasym |
$$\varpi$$ \varpi |
$$\varrho$$ \varrho |
$$\varsigma$$ \varsigma |
$$\varphi$$ \varphi |
$$\digamma $$ \digamma |
Other Letters
$$\imath$$ \imath |
$$\nabla$$ \nabla |
$$\Im$$ \Im |
$$\Reals$$ \Reals |
$$\text{\OE}$$ \text{\OE} |
$$\jmath$$ \jmath |
$$\partial$$ \partial |
$$\image$$ \image |
$$\wp$$ \wp |
$$\text{\o}$$ \text{\o} |
$$\aleph$$ \aleph |
$$\Game$$ \Game |
$$\Bbbk$$ \Bbbk |
$$\weierp$$ \weierp |
$$\text{\O}$$ \text{\O} |
$$\alef$$ \alef |
$$\Finv$$ \Finv |
$$\N$$ \N |
$$\Z$$ \Z |
$$\text{\ss}$$ \text{\ss} |
$$\alefsym$$ \alefsym |
$$\cnums$$ \cnums |
$$\natnums$$ \natnums |
$$\text{\aa}$$ \text{\aa} |
$$\text{\i}$$ \text{\i} |
$$\beth$$ \beth |
$$\Complex$$ \Complex |
$$\R$$ \R |
$$\text{\AA}$$ \text{\AA} |
$$\text{\j}$$ \text{\j} |
$$\gimel$$ \gimel |
$$\ell$$ \ell |
$$\Re$$ \Re |
$$\text{\ae}$$ \text{\ae} |
|
$$\daleth$$ \daleth |
$$\hbar$$ \hbar |
$$\real$$ \real |
$$\text{\AE}$$ \text{\AE} |
|
$$\eth$$ \eth |
$$\hslash$$ \hslash |
$$\reals$$ \reals |
$$\text{\oe}$$ \text{\oe} |
Direct Input: $$∂ ∇ ℑ Ⅎ ℵ ℶ ℷ ℸ ⅁ ℏ ð$$ ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖÙÚÛÜÝÞßàáâãäåçèéêëìíîïðñòóôöùúûüýþÿ
Unicode
The letters listed above will render in any KaTeX rendering mode.
If the KaTeX rendering mode is set to strict: false
or strict:"warn"
(default), then KaTeX will accept all Unicode letters. The letters not listed above will be rendered from system fonts, not KaTeX-supplied fonts, so their typography may clash. They may also cause small vertical alignment issues. KaTeX has detailed metrics for glyphs in Latin, Greek, and Cyrillic, but other glyphs are treated as if they are each as tall as the letter M.
For Persian composite characters, a user-supplied plug-in is under development.
$$\cancel{5}$$ \cancel{5} |
$$\overbrace{a+b+c}^{\text{note}}$$ \overbrace{a+b+c}^{\text{note}} |
$$\bcancel{5}$$ \bcancel{5} |
$$\underbrace{a+b+c}_{\text{note}}$$ \underbrace{a+b+c}_{\text{note}} |
$$\xcancel{ABC}$$ \xcancel{ABC} |
$$\not =$$ \not = |
$$\sout{abc}$$ \sout{abc} |
$$\boxed{\pi=\frac c d}$$ \boxed{\pi=\frac c d} |
\tag{hi} x+y^{2x}
$$$$\tag{hi} x+y^{2x}$$$$
\tag*{hi} x+y^{2x}
$$$$\tag*{hi} x+y^{2x}$$$$
KaTeX 0.10.0+ will insert automatic line breaks in inline math after relations or binary operators such as “=” or “+”. These can be suppressed by \nobreak
or by placing math inside a pair of braces, as in {F=ma}
. \allowbreak
will allow automatic line breaks at locations other than relations or operators.
Hard line breaks are \\\\
and \newline
.
In display math, KaTeX does not insert automatic line breaks. It ignores display math hard line breaks when rendering option strict: true
.
$$x_n$$ x_n |
$$\stackrel{!}{=}$$ \stackrel{!}{=} |
$$a \atop b$$ a \atop b |
$$e^x$$ e^x |
$$\overset{!}{=}$$ \overset{!}{=} |
$$a\raisebox{0.25em}{b}c$$ a\raisebox{0.25em}{b}c |
$$_u^o $$ _u^o |
$$\underset{!}{=}$$ \underset{!}{=} |
The second argument of \raisebox
can contain math if it is nested within $$…$$
delimiters, as in \raisebox{0.25em}{$$\frac a b$$}
$${=}\mathllap{/\,}$$ {=}\mathllap{/\,} |
$$\left(x^{\smash{2}}\right)$$ \left(x^{\smash{2}}\right) |
$$\mathrlap{\,/}{=}$$ \mathrlap{\,/}{=} |
$$\sqrt{\smash[b]{y}}$$ \sqrt{\smash[b]{y}} |
$$\displaystyle\sum{\mathclap{1\le i\le j\le n}} x{ij}$$ \sum_{\mathclap{1\le i\le j\le n}} x_{ij}
KaTeX also supports \llap
, \rlap
, and \clap
, but they will take only text, not math, as arguments.
Spacing
Function | Produces | Function | Produces |
---|---|---|---|
\, |
³∕₁₈ em space | \kern{distance} |
space, width = distance |
\thinspace |
³∕₁₈ em space | \mkern{distance} |
space, width = distance |
\: |
⁴∕₁₈ em space | \mskip{distance} |
space, width = distance |
\medspace |
⁴∕₁₈ em space | \hskip{distance} |
space, width = distance |
\; |
⁵∕₁₈ em space | \hspace{distance} |
space, width = distance |
\thickspace |
⁵∕₁₈ em space | \hspace*{distance} |
space, width = distance |
\enspace |
½ em space | \phantom{content} |
space the width and height of content |
\quad |
1 em space | \hphantom{content} |
space the width of content |
\qquad |
2 em space | \vphantom{content} |
a strut the height of content |
~ |
non-breaking space | \! |
– ³∕₁₈ em space |
\<space> |
space | \negthinspace |
– ³∕₁₈ em space |
\nobreakspace |
non-breaking space | \negmedspace |
– ⁴∕₁₈ em space |
\space |
space | \negthickspace |
– ⁵∕₁₈ em space |
Notes:
distance
will accept any of the KaTeX units.
\kern
, \mkern
, \mskip
, and \hspace
accept unbraced distances, as in: \kern1em
.
\mkern
and \mskip
will not work in text mode and both will write a console warning for any unit except mu
.
$$\forall$$ \forall |
$$\complement$$ \complement |
$$\therefore$$ \therefore |
$$\emptyset$$ \emptyset |
$$\exists$$ \exists |
$$\subset$$ \subset |
$$\because$$ \because |
$$\empty$$ \empty |
$$\exist$$ \exist |
$$\supset$$ \supset |
$$\mapsto$$ \mapsto |
$$\varnothing$$ \varnothing |
$$\nexists$$ \nexists |
$$\mid$$ \mid |
$$\to$$ \to |
$$\implies$$ \implies |
$$\in$$ \in |
$$\land$$ \land |
$$\gets$$ \gets |
$$\impliedby$$ \impliedby |
$$\isin$$ \isin |
$$\lor$$ \lor |
$$\leftrightarrow$$ \leftrightarrow |
$$\iff$$ \iff |
$$\notin$$ \notin |
$$\ni$$ \ni |
$$\notni$$ \notni |
$$\neg$$ \neg or \lnot |
Direct Input: $$∀ ∴ ∁ ∵ ∃ ∣ ∈ ∉ ∋ ⊂ ⊃ ∧ ∨ ↦ → ← ↔ ¬$$ ℂ ℍ ℕ ℙ ℚ ℝ
$$\def\foo{x^2} \foo + \foo$$ | \def\foo{x^2} \foo + \foo |
$$\gdef\bar#1{#1^2} \bar{y} + \bar{y}$$ | \gdef\bar#1{#1^2} \bar{y} + \bar{y} |
\global\def\macroname#1#2…{definition} |
|
\newcommand\macroname[numargs]{definition} |
|
\renewcommand\macroname[numargs]{definition} |
|
\providecommand\macroname[numargs]{definition} |
Macros can also be defined in the KaTeX rendering options.
Macros accept up to nine arguments: #1, #2, etc.
\gdef
and \global\def
macros will persist between math expressions.
Available functions include:
\char
\mathchoice
\TextOrMath
\@ifstar
\@ifnextchar
\@firstoftwo
\@secondoftwo
\relax
@ is a valid character for commands, as if \makeatletter
were in effect.
$$\sum$$ \sum |
$$\prod$$ \prod |
$$\bigotimes$$ \bigotimes |
$$\bigvee$$ \bigvee |
$$\int$$ \int |
$$\coprod$$ \coprod |
$$\bigoplus$$ \bigoplus |
$$\bigwedge$$ \bigwedge |
$$\iint$$ \iint |
$$\intop$$ \intop |
$$\bigodot$$ \bigodot |
$$\bigcap$$ \bigcap |
$$\iiint$$ \iiint |
$$\smallint$$ \smallint |
$$\biguplus$$ \biguplus |
$$\bigcup$$ \bigcup |
$$\oint$$ \oint |
$$\oiint$$ \oiint |
$$\oiiint$$ \oiiint |
$$\bigsqcup$$ \bigsqcup |
Direct Input: $$∫ ∬ ∭ ∮ ∏ ∐ ∑ ⋀ ⋁ ⋂ ⋃ ⨀ ⨁ ⨂ ⨄ ⨆$$
$$+$$ + |
$$\cdot$$ \cdot |
$$\gtrdot$$ \gtrdot |
$$x \pmod a$$ x \pmod a |
$$-$$ - |
$$\cdotp$$ \cdotp |
$$\intercal$$ \intercal |
$$x \pod a$$ x \pod a |
$$/$$ / |
$$\centerdot$$ \centerdot |
$$\land$$ \land |
$$\rhd$$ \rhd |
$$*$$ * |
$$\circ$$ \circ |
$$\leftthreetimes$$ \leftthreetimes |
$$\rightthreetimes$$ \rightthreetimes |
$$\amalg$$ \amalg |
$$\circledast$$ \circledast |
$$\ldotp$$ \ldotp |
$$\rtimes$$ \rtimes |
$$\And$$ \And |
$$\circledcirc$$ \circledcirc |
$$\lor$$ \lor |
$$\setminus$$ \setminus |
$$\ast$$ \ast |
$$\circleddash$$ \circleddash |
$$\lessdot$$ \lessdot |
$$\smallsetminus$$ \smallsetminus |
$$\barwedge$$ \barwedge |
$$\Cup$$ \Cup |
$$\lhd$$ \lhd |
$$\sqcap$$ \sqcap |
$$\bigcirc$$ \bigcirc |
$$\cup$$ \cup |
$$\ltimes$$ \ltimes |
$$\sqcup$$ \sqcup |
$$\bmod$$ \bmod |
$$\curlyvee$$ \curlyvee |
$$x \mod a$$ x\mod a |
$$\times$$ \times |
$$\boxdot$$ \boxdot |
$$\curlywedge$$ \curlywedge |
$$\mp$$ \mp |
$$\unlhd$$ \unlhd |
$$\boxminus$$ \boxminus |
$$\div$$ \div |
$$\odot$$ \odot |
$$\unrhd$$ \unrhd |
$$\boxplus$$ \boxplus |
$$\divideontimes$$ \divideontimes |
$$\ominus$$ \ominus |
$$\uplus$$ \uplus |
$$\boxtimes$$ \boxtimes |
$$\dotplus$$ \dotplus |
$$\oplus$$ \oplus |
$$\vee$$ \vee |
$$\bullet$$ \bullet |
$$\doublebarwedge$$ \doublebarwedge |
$$\otimes$$ \otimes |
$$\veebar$$ \veebar |
$$\Cap$$ \Cap |
$$\doublecap$$ \doublecap |
$$\oslash$$ \oslash |
$$\wedge$$ \wedge |
$$\cap$$ \cap |
$$\doublecup$$ \doublecup |
$$\pm$$ \pm or \plusmn |
$$\wr$$ \wr |
Direct Input: $$+ - / * ⋅ ± × ÷ ∓ ∔ ∧ ∨ ∩ ∪ ≀ ⊎ ⊓ ⊔ ⊕ ⊖ ⊗ ⊘ ⊙ ⊚ ⊛ ⊝$$
$$\frac{a}{b}$$ \frac{a}{b} |
$$\tfrac{a}{b}$$ \tfrac{a}{b} |
$$\genfrac ( ] {2pt}{1}a{a+1}$$ \genfrac ( ] {2pt}{1}a{a+1} |
$${a \over b}$$ {a \over b} |
$$\dfrac{a}{b}$$ \dfrac{a}{b} |
$${a \above{2pt} b+1}$$ {a \above{2pt} b+1} |
$$a/b$$ a/b |
$$\cfrac{a}{1 + \cfrac{1}{b}}$$ \cfrac{a}{1 + \cfrac{1}{b}} |
$$\binom{n}{k}$$ \binom{n}{k} |
$$\dbinom{n}{k}$$ \dbinom{n}{k} |
$${n\brace k}$$ {n\brace k} |
$${n \choose k}$$ {n \choose k} |
$$\tbinom{n}{k}$$ \tbinom{n}{k} |
$${n\brack k}$$ {n\brack k} |
$$\arcsin$$ \arcsin |
$$\cotg$$ \cotg |
$$\ln$$ \ln |
$$\det$$ \det |
$$\arccos$$ \arccos |
$$\coth$$ \coth |
$$\log$$ \log |
$$\gcd$$ \gcd |
$$\arctan$$ \arctan |
$$\csc$$ \csc |
$$\sec$$ \sec |
$$\inf$$ \inf |
$$\arctg$$ \arctg |
$$\ctg$$ \ctg |
$$\sin$$ \sin |
$$\lim$$ \lim |
$$\arcctg$$ \arcctg |
$$\cth$$ \cth |
$$\sinh$$ \sinh |
$$\liminf$$ \liminf |
$$\arg$$ \arg |
$$\deg$$ \deg |
$$\sh$$ \sh |
$$\limsup$$ \limsup |
$$\ch$$ \ch |
$$\dim$$ \dim |
$$\tan$$ \tan |
$$\max$$ \max |
$$\cos$$ \cos |
$$\exp$$ \exp |
$$\tanh$$ \tanh |
$$\min$$ \min |
$$\cosec$$ \cosec |
$$\hom$$ \hom |
$$\tg$$ \tg |
$$\Pr$$ \Pr |
$$\cosh$$ \cosh |
$$\ker$$ \ker |
$$\th$$ \th |
$$\sup$$ \sup |
$$\cot$$ \cot |
$$\lg$$ \lg |
$$\operatorname{f}$$ \operatorname{f} |
Functions on the right column of this table can take \limits
.
$$\sqrt{x}$$ \sqrt{x}
$$\sqrt[3]{x}$$ \sqrt[3]{x}
$$\stackrel{!}{=}$$ \stackrel{!}{=}
$$=$$ = |
$$\eqcirc$$ \eqcirc |
$$\lesseqgtr$$ \lesseqgtr |
$$\sqsupset$$ \sqsupset |
$$<$$ < |
$$\eqcolon$$ \eqcolon |
$$\lesseqqgtr$$ \lesseqqgtr |
$$\sqsupseteq$$ \sqsupseteq |
$$>$$ > |
$$\Eqcolon$$ \Eqcolon |
$$\lessgtr$$ \lessgtr |
$$\Subset$$ \Subset |
$$:$$ : |
$$\eqqcolon$$ \eqqcolon |
$$\lesssim$$ \lesssim |
$$\subset$$ \subset or \sub |
$$\approx$$ \approx |
$$\Eqqcolon$$ \Eqqcolon |
$$\ll$$ \ll |
$$\subseteq$$ \subseteq or \sube |
$$\approxeq$$ \approxeq |
$$\eqsim$$ \eqsim |
$$\lll$$ \lll |
$$\subseteqq$$ \subseteqq |
$$\asymp$$ \asymp |
$$\eqslantgtr$$ \eqslantgtr |
$$\llless$$ \llless |
$$\succ$$ \succ |
$$\backepsilon$$ \backepsilon |
$$\eqslantless$$ \eqslantless |
$$\lt$$ \lt |
$$\succapprox$$ \succapprox |
$$\backsim$$ \backsim |
$$\equiv$$ \equiv |
$$\mid$$ \mid |
$$\succcurlyeq$$ \succcurlyeq |
$$\backsimeq$$ \backsimeq |
$$\fallingdotseq$$ \fallingdotseq |
$$\models$$ \models |
$$\succeq$$ \succeq |
$$\between$$ \between |
$$\frown$$ \frown |
$$\multimap$$ \multimap |
$$\succsim$$ \succsim |
$$\bowtie$$ \bowtie |
$$\ge$$ \ge |
$$\owns$$ \owns |
$$\Supset$$ \Supset |
$$\bumpeq$$ \bumpeq |
$$\geq$$ \geq |
$$\parallel$$ \parallel |
$$\supset$$ \supset |
$$\Bumpeq$$ \Bumpeq |
$$\geqq$$ \geqq |
$$\perp$$ \perp |
$$\supseteq$$ \supseteq or \supe |
$$\circeq$$ \circeq |
$$\geqslant$$ \geqslant |
$$\pitchfork$$ \pitchfork |
$$\supseteqq$$ \supseteqq |
$$\colonapprox$$ \colonapprox |
$$\gg$$ \gg |
$$\prec$$ \prec |
$$\thickapprox$$ \thickapprox |
$$\Colonapprox$$ \Colonapprox |
$$\ggg$$ \ggg |
$$\precapprox$$ \precapprox |
$$\thicksim$$ \thicksim |
$$\coloneq$$ \coloneq |
$$\gggtr$$ \gggtr |
$$\preccurlyeq$$ \preccurlyeq |
$$\trianglelefteq$$ \trianglelefteq |
$$\Coloneq$$ \Coloneq |
$$\gt$$ \gt |
$$\preceq$$ \preceq |
$$\triangleq$$ \triangleq |
$$\coloneqq$$ \coloneqq |
$$\gtrapprox$$ \gtrapprox |
$$\precsim$$ \precsim |
$$\trianglerighteq$$ \trianglerighteq |
$$\Coloneqq$$ \Coloneqq |
$$\gtreqless$$ \gtreqless |
$$\propto$$ \propto |
$$\varpropto$$ \varpropto |
$$\colonsim$$ \colonsim |
$$\gtreqqless$$ \gtreqqless |
$$\risingdotseq$$ \risingdotseq |
$$\vartriangle$$ \vartriangle |
$$\Colonsim$$ \Colonsim |
$$\gtrless$$ \gtrless |
$$\shortmid$$ \shortmid |
$$\vartriangleleft$$ \vartriangleleft |
$$\cong$$ \cong |
$$\gtrsim$$ \gtrsim |
$$\shortparallel$$ \shortparallel |
$$\vartriangleright$$ \vartriangleright |
$$\curlyeqprec$$ \curlyeqprec |
$$\in$$ \in or \isin |
$$\sim$$ \sim |
$$\vcentcolon$$ \vcentcolon |
$$\curlyeqsucc$$ \curlyeqsucc |
$$\Join$$ \Join |
$$\simeq$$ \simeq |
$$\vdash$$ \vdash |
$$\dashv$$ \dashv |
$$\le$$ \le |
$$\smallfrown$$ \smallfrown |
$$\vDash$$ \vDash |
$$\dblcolon$$ \dblcolon |
$$\leq$$ \leq |
$$\smallsmile$$ \smallsmile |
$$\Vdash$$ \Vdash |
$$\doteq$$ \doteq |
$$\leqq$$ \leqq |
$$\smile$$ \smile |
$$\Vvdash$$ \Vvdash |
$$\Doteq$$ \Doteq |
$$\leqslant$$ \leqslant |
$$\sqsubset$$ \sqsubset |
|
$$\doteqdot$$ \doteqdot |
$$\lessapprox$$ \lessapprox |
$$\sqsubseteq$$ \sqsubseteq |
Direct Input: $$= < > : ∈ ∋ ∝ ∼ ∽ ≂ ≃ ≅ ≈ ≊ ≍ ≎ ≏ ≐ ≑ ≒ ≓ ≖ ≗ ≜ ≡ ≤ ≥ ≦ ≧ ≫ ≬ ≳ ≷ ≺ ≻ ≼ ≽ ≾ ≿ ⊂ ⊃ ⊆ ⊇ ⊏ ⊐ ⊑ ⊒ ⊢ ⊣ ⊩ ⊪ ⊸ ⋈ ⋍ ⋐ ⋑ ⋔ ⋙ ⋛ ⋞ ⋟ ⌢ ⌣ ⩾ ⪆ ⪌ ⪕ ⪖ ⪯ ⪰ ⪷ ⪸ ⫅ ⫆ ≲ ⩽ ⪅ ≶ ⋚ ⪋ ⟂ ⊨$$ ≔ ≕ ⩴
$$\not =$$ \not =
$$\gnapprox$$ \gnapprox |
$$\ngeqslant$$ \ngeqslant |
$$\nsubseteq$$ \nsubseteq |
$$\precneqq$$ \precneqq |
$$\gneq$$ \gneq |
$$\ngtr$$ \ngtr |
$$\nsubseteqq$$ \nsubseteqq |
$$\precnsim$$ \precnsim |
$$\gneqq$$ \gneqq |
$$\nleq$$ \nleq |
$$\nsucc$$ \nsucc |
$$\subsetneq$$ \subsetneq |
$$\gnsim$$ \gnsim |
$$\nleqq$$ \nleqq |
$$\nsucceq$$ \nsucceq |
$$\subsetneqq$$ \subsetneqq |
$$\gvertneqq$$ \gvertneqq |
$$\nleqslant$$ \nleqslant |
$$\nsupseteq$$ \nsupseteq |
$$\succnapprox$$ \succnapprox |
$$\lnapprox$$ \lnapprox |
$$\nless$$ \nless |
$$\nsupseteqq$$ \nsupseteqq |
$$\succneqq$$ \succneqq |
$$\lneq$$ \lneq |
$$\nmid$$ \nmid |
$$\ntriangleleft$$ \ntriangleleft |
$$\succnsim$$ \succnsim |
$$\lneqq$$ \lneqq |
$$\notin$$ \notin |
$$\ntrianglelefteq$$ \ntrianglelefteq |
$$\supsetneq$$ \supsetneq |
$$\lnsim$$ \lnsim |
$$\notni$$ \notni |
$$\ntriangleright$$ \ntriangleright |
$$\supsetneqq$$ \supsetneqq |
$$\lvertneqq$$ \lvertneqq |
$$\nparallel$$ \nparallel |
$$\ntrianglerighteq$$ \ntrianglerighteq |
$$\varsubsetneq$$ \varsubsetneq |
$$\ncong$$ \ncong |
$$\nprec$$ \nprec |
$$\nvdash$$ \nvdash |
$$\varsubsetneqq$$ \varsubsetneqq |
$$\ne$$ \ne |
$$\npreceq$$ \npreceq |
$$\nvDash$$ \nvDash |
$$\varsupsetneq$$ \varsupsetneq |
$$\neq$$ \neq |
$$\nshortmid$$ \nshortmid |
$$\nVDash$$ \nVDash |
$$\varsupsetneqq$$ \varsupsetneqq |
$$\ngeq$$ \ngeq |
$$\nshortparallel$$ \nshortparallel |
$$\nVdash$$ \nVdash |
|
$$\ngeqq$$ \ngeqq |
$$\nsim$$ \nsim |
$$\precnapprox$$ \precnapprox |
Direct Input: $$∉ ∌ ∤ ∦ ≁ ≆ ≠ ≨ ≩ ≮ ≯ ≰ ≱ ⊀ ⊁ ⊈ ⊉ ⊊ ⊋ ⊬ ⊭ ⊮ ⊯ ⋠ ⋡ ⋦ ⋧ ⋨ ⋩ ⋬ ⋭ ⪇ ⪈ ⪉ ⪊ ⪵ ⪶ ⪹ ⪺ ⫋ ⫌$$
$$\circlearrowleft$$ \circlearrowleft |
$$\leftharpoonup$$ \leftharpoonup |
$$\rArr$$ \rArr |
$$\circlearrowright$$ \circlearrowright |
$$\leftleftarrows$$ \leftleftarrows |
$$\rarr$$ \rarr |
$$\curvearrowleft$$ \curvearrowleft |
$$\leftrightarrow$$ \leftrightarrow |
$$\restriction$$ \restriction |
$$\curvearrowright$$ \curvearrowright |
$$\Leftrightarrow$$ \Leftrightarrow |
$$\rightarrow$$ \rightarrow |
$$\Darr$$ \Darr |
$$\leftrightarrows$$ \leftrightarrows |
$$\Rightarrow$$ \Rightarrow |
$$\dArr$$ \dArr |
$$\leftrightharpoons$$ \leftrightharpoons |
$$\rightarrowtail$$ \rightarrowtail |
$$\darr$$ \darr |
$$\leftrightsquigarrow$$ \leftrightsquigarrow |
$$\rightharpoondown$$ \rightharpoondown |
$$\dashleftarrow$$ \dashleftarrow |
$$\Lleftarrow$$ \Lleftarrow |
$$\rightharpoonup$$ \rightharpoonup |
$$\dashrightarrow$$ \dashrightarrow |
$$\longleftarrow$$ \longleftarrow |
$$\rightleftarrows$$ \rightleftarrows |
$$\downarrow$$ \downarrow |
$$\Longleftarrow$$ \Longleftarrow |
$$\rightleftharpoons$$ \rightleftharpoons |
$$\Downarrow$$ \Downarrow |
$$\longleftrightarrow$$ \longleftrightarrow |
$$\rightrightarrows$$ \rightrightarrows |
$$\downdownarrows$$ \downdownarrows |
$$\Longleftrightarrow$$ \Longleftrightarrow |
$$\rightsquigarrow$$ \rightsquigarrow |
$$\downharpoonleft$$ \downharpoonleft |
$$\longmapsto$$ \longmapsto |
$$\Rrightarrow$$ \Rrightarrow |
$$\downharpoonright$$ \downharpoonright |
$$\longrightarrow$$ \longrightarrow |
$$\Rsh$$ \Rsh |
$$\gets$$ \gets |
$$\Longrightarrow$$ \Longrightarrow |
$$\searrow$$ \searrow |
$$\Harr$$ \Harr |
$$\looparrowleft$$ \looparrowleft |
$$\swarrow$$ \swarrow |
$$\hArr$$ \hArr |
$$\looparrowright$$ \looparrowright |
$$\to$$ \to |
$$\harr$$ \harr |
$$\Lrarr$$ \Lrarr |
$$\twoheadleftarrow$$ \twoheadleftarrow |
$$\hookleftarrow$$ \hookleftarrow |
$$\lrArr$$ \lrArr |
$$\twoheadrightarrow$$ \twoheadrightarrow |
$$\hookrightarrow$$ \hookrightarrow |
$$\lrarr$$ \lrarr |
$$\Uarr$$ \Uarr |
$$\iff$$ \iff |
$$\Lsh$$ \Lsh |
$$\uArr$$ \uArr |
$$\impliedby$$ \impliedby |
$$\mapsto$$ \mapsto |
$$\uarr$$ \uarr |
$$\implies$$ \implies |
$$\nearrow$$ \nearrow |
$$\uparrow$$ \uparrow |
$$\Larr$$ \Larr |
$$\nleftarrow$$ \nleftarrow |
$$\Uparrow$$ \Uparrow |
$$\lArr$$ \lArr |
$$\nLeftarrow$$ \nLeftarrow |
$$\updownarrow$$ \updownarrow |
$$\larr$$ \larr |
$$\nleftrightarrow$$ \nleftrightarrow |
$$\Updownarrow$$ \Updownarrow |
$$\leadsto$$ \leadsto |
$$\nLeftrightarrow$$ \nLeftrightarrow |
$$\upharpoonleft$$ \upharpoonleft |
$$\leftarrow$$ \leftarrow |
$$\nrightarrow$$ \nrightarrow |
$$\upharpoonright$$ \upharpoonright |
$$\Leftarrow$$ \Leftarrow |
$$\nRightarrow$$ \nRightarrow |
$$\upuparrows$$ \upuparrows |
$$\leftarrowtail$$ \leftarrowtail |
$$\nwarrow$$ \nwarrow |
|
$$\leftharpoondown$$ \leftharpoondown |
$$\Rarr$$ \Rarr |
Direct Input: $$← ↑ → ↓ ↔ ↕ ↖ ↗ ↘ ↙ ↚ ↛ ↞ ↠ ↢ ↣ ↦ ↩ ↪ ↫ ↬ ↭ ↮ ↰ ↱↶ ↷ ↺ ↻ ↼ ↽ ↾ ↾ ↿ ⇀ ⇁ ⇂ ⇃ ⇄ ⇆ ⇇ ⇈ ⇉ ⇊ ⇋ ⇌⇍ ⇎ ⇏ ⇐ ⇑ ⇒ ⇓ ⇔ ⇕ ⇚ ⇛ ⇝ ⇠ ⇢ ⟵ ⟶ ⟷ ⟸ ⟹ ⟺ ⟼$$ ↽
Extensible Arrows
$$\xleftarrow{abc}$$ \xleftarrow{abc} |
$$\xrightarrow[under]{over}$$ \xrightarrow[under]{over} |
$$\xLeftarrow{abc}$$ \xLeftarrow{abc} |
$$\xRightarrow{abc}$$ \xRightarrow{abc} |
$$\xleftrightarrow{abc}$$ \xleftrightarrow{abc} |
$$\xLeftrightarrow{abc}$$ \xLeftrightarrow{abc} |
$$\xhookleftarrow{abc}$$ \xhookleftarrow{abc} |
$$\xhookrightarrow{abc}$$ \xhookrightarrow{abc} |
$$\xtwoheadleftarrow{abc}$$ \xtwoheadleftarrow{abc} |
$$\xtwoheadrightarrow{abc}$$ \xtwoheadrightarrow{abc} |
$$\xleftharpoonup{abc}$$ \xleftharpoonup{abc} |
$$\xrightharpoonup{abc}$$ \xrightharpoonup{abc} |
$$\xleftharpoondown{abc}$$ \xleftharpoondown{abc} |
$$\xrightharpoondown{abc}$$ \xrightharpoondown{abc} |
$$\xleftrightharpoons{abc}$$ \xleftrightharpoons{abc} |
$$\xrightleftharpoons{abc}$$ \xrightleftharpoons{abc} |
$$\xtofrom{abc}$$ \xtofrom{abc} |
$$\xmapsto{abc}$$ \xmapsto{abc} |
$$\xlongequal{abc}$$ \xlongequal{abc} |
Extensible arrows all can take an optional argument in the same manner
as \xrightarrow[under]{over}
.
Class Assignment
\mathbin
\mathclose
\mathinner
\mathop
\mathopen
\mathord
\mathpunct
\mathrel
Color
$$\color{blue} F=ma$$ \color{blue} F=ma
Note that KaTeX \color
acts like a switch. This aligns with LaTeX and differs from MathJax.
Other KaTeX color functions expect the content to be a function argument:
$$\textcolor{blue}{F=ma}$$ \textcolor{blue}{F=ma}
$$\textcolor{#228B22}{F=ma}$$ \textcolor{#228B22}{F=ma}
$$\colorbox{aqua}{A}$$ \colorbox{aqua}{A}
$$\fcolorbox{red}{aqua}{A}$$ \fcolorbox{red}{aqua}{A}
For color definition, KaTeX color functions will accept the standard HTML predefined color names. They will also accept an RGB argument in CSS hexadecimal style. The “#” is optional before a six-digit specification.
Font
$$\mathrm{Ab0}$$ \mathrm{Ab0} |
$$\mathbf{Ab0}$$ \mathbf{Ab0} |
$$\mathit{Ab}$$ \mathit{Ab} |
$$\textrm{Ab0}$$ \textrm{Ab0} |
$$\textbf{Ab0}$$ \textbf{Ab0} |
$$\textit{Ab}$$ \textit{Ab} |
$$\rm Ab0$$ \rm Ab0 |
$$\bf Ab0$$ \bf Ab0 |
$$\it Ab$$ \it Ab |
$$\textnormal{Ab0}$$ \textnormal{Ab0} |
$$\bold{Ab0}$$ \bold{Ab0} |
$$\Bbb{AB}$$ \Bbb{AB} |
$$\text{Ab0}$$ \text{Ab0} |
$$\boldsymbol{Ab}$$ \boldsymbol{Ab} |
$$\mathbb{AB}$$ \mathbb{AB} |
$$\mathsf{Ab0}$$ \mathsf{Ab0} |
$$\bm{Ab}$$ \bm{Ab} |
$$\frak{Ab0}$$ \frak{Ab0} |
$$\textsf{Ab0}$$ \textsf{Ab0} |
$$\mathtt{Ab0}$$ \mathtt{Ab0} |
$$\mathfrak{Ab0}$$ \mathfrak{Ab0} |
$$\sf Ab0$$ \sf Ab0 |
$$\texttt{Ab0}$$ \texttt{Ab0} |
$$\mathcal{AB0}$$ \mathcal{AB0} |
$$\tt Ab0$$ \tt Ab0 |
$$\mathscr{AB}$$ \mathscr{AB} |
One can stack font family, font weight, and font shape by using the \textXX
versions of the font functions. So \textsf{\textbf{H}}
will produce $$\textsf{\textbf{H}}$$. The other versions do not stack, e.g., \mathsf{\mathbf{H}}
will produce $$\mathsf{\mathbf{H}}$$.
In cases where KaTeX fonts do not have a bold glyph, \pmb
can simulate one. For example, \pmb{\mu}
renders as : $$\pmb{\mu}$$
Size
$$\Huge AB$$ \Huge AB |
$$\normalsize AB$$ \normalsize AB |
$$\huge AB$$ \huge AB |
$$\small AB$$ \small AB |
$$\LARGE AB$$ \LARGE AB |
$$\footnotesize AB$$ \footnotesize AB |
$$\Large AB$$ \Large AB |
$$\scriptsize AB$$ \scriptsize AB |
$$\large AB$$ \large AB |
$$\tiny AB$$ \tiny AB |
Style
||
|:——————————————————-|
|$$\displaystyle\sum{i=1}^n$$ \displaystyle\sum_{i=1}^n
|$$\textstyle\sum{i=1}^n$$ \textstyle\sum_{i=1}^n
|$$\scriptstyle x$$ \scriptstyle x
(The size of a first sub/superscript)
|$$\scriptscriptstyle x$$ \scriptscriptstyle x
(The size of subsequent sub/superscripts)
|$$\lim\limits_x$$ \lim\limits_x
|$$\lim\nolimits_x$$ \lim\nolimits_x
|$$\verb!x^2!$$ \verb!x^2!
\text{…}
will accept nested $$…$$
fragments and render them in math mode.
% comment |
$$\dots$$ \dots |
$$\KaTeX$$ \KaTeX |
$$\%$$ \% |
$$\cdots$$ \cdots |
$$\LaTeX$$ \LaTeX |
$$#$$ \# |
$$\ddots$$ \ddots |
$$\TeX$$ \TeX |
$$&$$ \& |
$$\ldots$$ \ldots |
$$\nabla$$ \nabla |
$$_$$ \_ |
$$\vdots$$ \vdots |
$$\infty$$ \infty |
$$\text{\textunderscore}$$ \text{\textunderscore} |
$$\dotsb$$ \dotsb |
$$\infin$$ \infin |
$$\text{–}$$ \text{--} |
$$\dotsc$$ \dotsc |
$$\checkmark$$ \checkmark |
$$\text{\textendash}$$ \text{\textendash} |
$$\dotsi$$ \dotsi |
$$\dag$$ \dag |
$$\text{—}$$ \text{---} |
$$\dotsm$$ \dotsm |
$$\dagger$$ \dagger |
$$\text{\textemdash}$$ \text{\textemdash} |
$$\dotso$$ \dotso |
$$\text{\textdagger}$$ \text{\textdagger} |
$$\text{\textasciitilde}$$ \text{\textasciitilde} |
$$\sdot$$ \sdot |
$$\ddag$$ \ddag |
$$$$ <code> |
$$\mathellipsis$$ \mathellipsis |
$$\ddagger$$ \ddagger |
$$\text{\textquoteleft}$$ text{\textquoteleft} |
$$\text{\textellipsis}$$ \text{\textellipsis} |
$$\text{\textdaggerdbl}$$ \text{\textdaggerdbl} |
$$\lq$$ \lq |
$$\Box$$ \Box |
$$\Dagger$$ \Dagger |
$$\text{\textquoteright}$$ \text{\textquoteright} |
$$\square$$ \square |
$$\angle$$ \angle |
$$\rq$$ \rq |
$$\blacksquare$$ \blacksquare |
$$\measuredangle$$ \measuredangle |
$$\text{\textquotedblleft}$$ \text{\textquotedblleft} |
$$\triangle$$ \triangle |
$$\sphericalangle$$ \sphericalangle |
$$“$$ " |
$$\triangledown$$ \triangledown |
$$\top$$ \top |
$$\text{\textquotedblright}$$ \text{\textquotedblright} |
$$\triangleleft$$ \triangleleft |
$$\bot$$ \bot |
$$\colon$$ \colon |
$$\triangleright$$ \triangleright |
$$\$$$$ \$$ |
$$\backprime$$ \backprime |
$$\bigtriangledown$$ \bigtriangledown |
$$\text{\textdollar}$$ \text{\textdollar} |
$$\prime$$ \prime |
$$\bigtriangleup$$ \bigtriangleup |
$$\pounds$$ \pounds |
$$\text{\textless}$$ \text{\textless} |
$$\blacktriangle$$ \blacktriangle |
$$\mathsterling$$ \mathsterling |
$$\text{\textgreater}$$ \text{\textgreater} |
$$\blacktriangledown$$ \blacktriangledown |
$$\text{\textsterling}$$ \text{\textsterling} |
$$\text{\textbar}$$ \text{\textbar} |
$$\blacktriangleleft$$ \blacktriangleleft |
$$\yen$$ \yen |
$$\text{\textbardbl}$$ \text{\textbardbl} |
$$\blacktriangleright$$ \blacktriangleright |
$$\surd$$ \surd |
$$\text{\textbraceleft}$$ \text{\textbraceleft} |
$$\diamond$$ \diamond |
$$\degree$$ \degree |
$$\text{\textbraceright}$$ \text{\textbraceright} |
$$\Diamond$$ \Diamond |
$$\text{\textdegree}$$ \text{\textdegree} |
$$\text{\P}$$ \text{\P} |
$$\lozenge$$ \lozenge |
$$\mho$$ \mho |
$$\text{\S}$$ \text{\S} |
$$\blacklozenge$$ \blacklozenge |
$$\diagdown$$ \diagdown |
$$\text{\sect}$$ \text{\sect} |
$$\star$$ \star |
$$\diagup$$ \diagup |
$$\copyright$$ \copyright |
$$\bigstar$$ \bigstar |
$$\flat$$ \flat |
$$\circledR$$ \circledR |
$$\clubsuit$$ \clubsuit |
$$\natural$$ \natural |
$$\text{\textregistered}$$ \text{\textregistered} |
$$\clubs$$ \clubs |
$$\sharp$$ \sharp |
$$\circledS$$ \circledS |
$$\diamondsuit$$ \diamondsuit |
$$\heartsuit$$ \heartsuit |
$$\text{\textcircled a}$$ \text{\textcircled a} |
$$\diamonds$$ \diamonds |
$$\hearts$$ \hearts |
$$\maltese$$ \maltese |
$$\spadesuit$$ \spadesuit |
$$\spades$$ \spades |
Direct Input: $$£ ¥ ∇ ∞ · ∠ ∡ ∢ ♠ ♡ ♢ ♣ ♭ ♮ ♯ ✓ … ⋮ ⋯ ⋱ !$$ ‼
In KaTeX, units are proportioned as they are in TeX.
KaTeX units are different than CSS units.
KaTeX Unit | Value | KaTeX Unit | Value |
---|---|---|---|
em | CSS em | bp | 1/72 inch × F × G |
ex | CSS ex | pc | 12 KaTeX pt |
mu | 1⁄18 CSS em | dd | 1238/1157 KaTeX pt |
pt | 1⁄72.27 inch × F × G | cc | 14856⁄1157 KaTeX pt |
mm | 1 mm × F × G | nd | 685⁄642 KaTeX pt |
cm | 1 cm × F × G | nc | 1370/107 KaTeX pt |
in | 1 inch × F × G | sp | 1⁄65536 KaTeX pt |
where:
F = (font size of surrounding HTML text)/(10 pt)
G = 1.21 by default, because KaTeX font-size is normally 1.21 × the surrounding font size. This value can be overridden by the CSS of an HTML page.
The effect of style and size:
Unit | textstyle | scriptscript | huge |
---|---|---|---|
em or ex | $$\rule{1em}{1em}$$ | $$\scriptscriptstyle\rule{1em}{1em}$$ | $$\huge\rule{1em}{1em}$$ |
mu | $$\rule{18mu}{18mu}$$ | $$\scriptscriptstyle\rule{18mu}{18mu}$$ | $$\huge\rule{18mu}{18mu}$$ |
others | $$\rule{10pt}{10pt}$$ | $$\scriptscriptstyle\rule{10pt}{10pt}$$ | $$\huge\rule{10pt}{10pt}$$ |